



Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

NASA Technical Reports Server (NTRS), et al., William A. Wood



DOWNLOAD PDF

## Orbiter Entry Aeroheating Working Group Viscous Cfd Boundary Layer Transition Trailblazer Solutions

By William A. Wood

BiblioGov. Paperback. Book Condition: New. This item is printed on demand. Paperback. 26 pages. Dimensions: 9.7in. x 7.4in. x 0.1in. Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not...



READ ONLINE  
[ 6.07 MB ]

### Reviews

*An exceptional pdf as well as the typeface utilized was interesting to see. I am quite late in start reading this one, but better then never. I am very happy to explain how this is actually the best pdf i actually have go through within my individual daily life and might be he greatest publication for possibly.*

-- Freddie Zulauf

*Absolutely among the finest pdf I have got possibly read. I am quite late in start reading this one, but better then never. It is extremely difficult to leave it before concluding, once you begin to read the book.*

-- Prof. Lois Cormier II